Бази даних


Наукова періодика України - результати пошуку


Mozilla Firefox Для швидкої роботи та реалізації всіх функціональних можливостей пошукової системи використовуйте браузер
"Mozilla Firefox"

Вид пошуку
Повнотекстовий пошук
 Знайдено в інших БД:Журнали та продовжувані видання (2)Реферативна база даних (15)
Список видань за алфавітом назв:
A  B  C  D  E  F  G  H  I  J  L  M  N  O  P  R  S  T  U  V  W  
А  Б  В  Г  Ґ  Д  Е  Є  Ж  З  И  І  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  

Авторський покажчик    Покажчик назв публікацій



Пошуковий запит: (<.>A=Kochelap V$<.>)
Загальна кількість знайдених документів : 11
Представлено документи з 1 до 11
1.

Kochelap V. A. 
Interaction between an isotropic nanoparticle and drifting electrons in a quantum well [Електронний ресурс] / V. A. Kochelap, S. M. Kukhtaruk // Ukrainian journal of physics. - 2012. - Vol. 57, № 3. - С. 367-380. - Режим доступу: http://nbuv.gov.ua/UJRN/Ukjourph_2012_57_3_14
Попередній перегляд:   Завантажити - 1.668 Mb    Зміст випуску     Цитування
2.

Kochelap V. A. 
Professor Solomon Isaakovich Pekar [Електронний ресурс] / V. A. Kochelap // Semiconductor physics, quantum electronics & optoelectronics. - 2018. - Vol. 21, № 1. - С. 102-104. - Режим доступу: http://nbuv.gov.ua/UJRN/MSMW_2018_21_1_16
Professor Solomon Isaakovich Pekar belongs to the pleiad of outstanding physicists-theorists whose works have been made considerable contribution to the fundamentals of the modem theory of solids. Being of a great profundity and lucidity, Pekar's works prove to be the principal in a number of scientific directions. His name is tightly bound with several the most important discoveries in physics of solids, including theory of rectifiers and autolocalized states of electrons that were named by him as "polarons", the Pekar's waves, prediction of the zero-phonon line in spectra of crystals and many others. These achievements are considered as classical results in physics, and up to date they serve as a source of new physical ideas.
Попередній перегляд:   Завантажити - 91.988 Kb    Зміст випуску    Реферативна БД     Цитування
3.

Vinoslavskii M. M. 
Current and electroluminescence intensity oscillations under bipolar lateral electric transport in the double-GaAs/InGaAs/GaAs quantum wells [Електронний ресурс] / M. M. Vinoslavskii, P. A. Belevskii, V. M. Poroshin, O. S. Pilipchuk, V. O. Kochelap // Semiconductor physics, quantum electronics & optoelectronics. - 2018. - Vol. 21, № 3. - С. 256-262. - Режим доступу: http://nbuv.gov.ua/UJRN/MSMW_2018_21_3_8
The lateral bipolar electric transport has been investigated for multi-period n-In0,08Ga0,92As/GaAs heterostructures with tunnel-coupled double-quantum wells for various carrier mobilities at temperatures 4,2 - 160 K. The presence of two types of charge carriers - electrons and holes - is identified by observation of interband electroluminescence (EL). We found that the current-vollage characteristic has a complex nonlinear shape and changes with current, which is accompanied by modification of the EL intensity and spectrum. We observed oscillations of the current and EL intensity with the frequency of tens MHz, both arise at the electric fields well below the threshold field of the Gunn instability. Oscillations of the EL intensity occur in the opposite phase to the current. The electric and EL measurements have shown that the minority carriers, the holes, are supplied from the anode side of the sample. Spatial separation of electrons and holes in the double-quantum well structures provides abnormally large both electron-hole recombination time and drift length of the holes. Studied behavior of the current and EL can be interpreted as a combined effect of the spatial separation of the electrons and holes and dynamics of their transfer between undoped and doped quantum wells. We suggest that observed real-space transfer effects in high-field bipolar electric transport and, particularly, highly intensive interband electroluminescence from macroscopically large areas may be used in a number of optoelectronic applications.
Попередній перегляд:   Завантажити - 344.072 Kb    Зміст випуску    Реферативна БД     Цитування
4.

Korotyeyev V. V. 
Be-ion implanted p-n InSb diode for infrared applications. Modeling, fabrication and characterization [Електронний ресурс] / V. V. Korotyeyev, V. O. Kochelap, S. V. Sapon, B. M. Romaniuk, V. P. Melnik, O. V. Dubikovskyi, T. M. Sabov // Semiconductor physics, quantum electronics & optoelectronics. - 2018. - Vol. 21, № 3. - С. 294-306. - Режим доступу: http://nbuv.gov.ua/UJRN/MSMW_2018_21_3_14
Transport theory for modeling the electric characteristics of high-quality p-n diodes has been developed. This theory takes into account a non-uniform profile of p-doping, finite thickness of the quasi-neutral regions and possible non-uniformity of the bulk recombination coefficient. The theory is based on related solutions of the Poisson equation, drift-diffusion equation and continuity equation with a generation-recombination term taking into account the simple band-to-band generation/recombination model. We have ascertained that the non-uniform profile of p-doping can lead to formation of p-n junctions with a specific two-slope form of the electrostatic barrier and two regions with the high built-in electric fields. We have found that at strong p<^>+-doping the band structure of the InSb p-n junction has the form that can facilitate the emergence of additional mechanisms of current flow due to the tunneling and avalanche effects at the reverse bias. Using the literary data of the electron and hole lifetimes in InSb at cryogenic temperatures, we have found that the coefficient of bulk recombination can have an essential spatial dependence and considerably increases in the space charge region of p-n diode. The theory was applied to our analysis of p-n InSb diodes with p<^>+-doping by using Be-ion implantation performed in ISP NASU. The theory predicts optimal conditions for detection of infrared emission. The technological process of fabrication, processing and testing has been described in details. Theoretically, it has been found that for parameters of the fabricated diodes and at 77 K the dark currents limited by diffusion and generation-recombination mechanisms should be less than 0,1 mu A at the inverse bias of the order of 0,1 V. The measured diode's I-V characteristics were expected to have strong asymmetry, however, dark currents are by one order larger than those predicted by theory. The latter can be associated with additional current mechanisms, namely: tunneling and avalanche effects.
Попередній перегляд:   Завантажити - 2.05 Mb    Зміст випуску    Реферативна БД     Цитування
5.

Kochelap V. O. 
M. F. Deigen and electron-phonon interaction [Електронний ресурс] / V. O. Kochelap // Semiconductor physics, quantum electronics & optoelectronics. - 2018. - Vol. 21, № 3. - С. 315. - Режим доступу: http://nbuv.gov.ua/UJRN/MSMW_2018_21_3_17
Попередній перегляд:   Завантажити - 1.496 Mb    Зміст випуску     Цитування
6.

Syngaivska G. I. 
Diffusion properties of electrons in GaN crystals subjected to electric and magnetic fields [Електронний ресурс] / G. I. Syngaivska, V. V. Koroteev, V. A. Kochelap // Semiconductor physics, quantum electronics & optoelectronics. - 2018. - Vol. 21, № 4. - С. 325-335. - Режим доступу: http://nbuv.gov.ua/UJRN/MSMW_2018_21_4_4
Попередній перегляд:   Завантажити - 664.467 Kb    Зміст випуску     Цитування
7.

Kochelap V. O. 
Lecture 1 from the cycle. "Introduction to nanoelectronics and optoelectronics" by Prof. Vyacheslav O. Kochelap. [Електронний ресурс] / V. O. Kochelap // Semiconductor physics, quantum electronics & optoelectronics. - 2019. - Vol. 22, № 1. - С. 130. - Режим доступу: http://nbuv.gov.ua/UJRN/MSMW_2019_22_1_21
Попередній перегляд:   Завантажити - 131.938 Kb    Зміст випуску     Цитування
8.

Korotyeyev V. V. 
Interaction of sub-terahertz radiation with low-doped grating-based AlGaN/GaN plasmonic structures. Time-domain spectroscopy measurements and electrodynamic modeling [Електронний ресурс] / V. V. Korotyeyev, Yu. M. Lyaschuk, V. A. Kochelap, L. Varani, D. Coquillat, S. Danylyuk, S. Brose, S. A. Vitusevich // Semiconductor physics, quantum electronics & optoelectronics. - 2019. - Vol. 22, № 2. - С. 237-251. - Режим доступу: http://nbuv.gov.ua/UJRN/MSMW_2019_22_2_17
We have presented the results of terahertz time-domain spectroscopy measurements and a rigorous electrodynamic modeling of the optical characteristics of grating-based AlGaN/GaN plasmonic structures with low-doped two-dimensional electron gas in the frequency range of 0,1 - 1,5 THz. Two samples with grating aspect ratios (strip width/period) of 2,4/3 and 1,2/1,5 <$Emu>m have been investigated. The measured transmission spectra are reconstructed in the calculations with high accuracy. The transmission spectra for p-polarized incident radiation exhibits Fabri - Perot oscillation behavior due to the optically-thick substrate. The specific values of amplitude and spectral position of the transmission maxima are associated with the coupling of terahertz radiation with 2D electron gas due to plasmon excitations. Both calculations and transmission/reflection measurements demonstrate that plasmonic structures with micro-scaled metallic grating have three-fold increase of non-resonant absorption of terahertz radiation in comparison with the bare heterostructure. The polarization measurements of the transmission spectra of the plasmonic structures well agree with calculations and indicate a well-pronounced filtering effect of the grating for the s-component of the incident electromagnetic wave. The obtained values of the transmission for p- and s-polarized incident radiation demonstrate the high quality of deposited metallic grating with the extinction ratio higher than 80:1 for sub- and few THz frequency range.
Попередній перегляд:   Завантажити - 2.353 Mb    Зміст випуску    Реферативна БД     Цитування
9.

Kochelap V. O. 
Introduction to nanoelectronics and optoelectronics: Science, Nanotechnology, Engineering and application (lectures 3 and 4) [Електронний ресурс] / V. O. Kochelap // Semiconductor physics, quantum electronics & optoelectronics. - 2019. - Vol. 22, № 2. - С. 257-258. - Режим доступу: http://nbuv.gov.ua/UJRN/MSMW_2019_22_2_19
Попередній перегляд:   Завантажити - 160.681 Kb    Зміст випуску     Цитування
10.

Kochelap V. O. 
Nanoelectronics and Optoelectronics: Science, Nanotechnology, Engineering and Application. Lectures 5 and 6 [Електронний ресурс] / V. O. Kochelap // Semiconductor physics, quantum electronics & optoelectronics. - 2019. - Vol. 22, № 3. - С. 372-373. - Режим доступу: http://nbuv.gov.ua/UJRN/MSMW_2019_22_3_20
Попередній перегляд:   Завантажити - 323.412 Kb    Зміст випуску     Цитування
11.

Kochelap V. O. 
Nanoelectronics and Optoelectronics: Science, Nanotechnology, Engineering and Application. Lectures 7 and 8 [Електронний ресурс] / V. O. Kochelap // Semiconductor physics, quantum electronics & optoelectronics. - 2019. - Vol. 22, № 4. - С. 486. - Режим доступу: http://nbuv.gov.ua/UJRN/MSMW_2019_22_4_19
Попередній перегляд:   Завантажити - 66.46 Kb    Зміст випуску     Цитування
 
Відділ наукової організації електронних інформаційних ресурсів
Пам`ятка користувача

Всі права захищені © Національна бібліотека України імені В. І. Вернадського